Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 6 entries in the Bibliography.


Showing entries from 1 through 6


2015

Laboratory studies of nonlinear whistler wave processes in the Van Allen radiation belts

Important nonlinear wave-wave and wave-particle interactions that occur in the Earth\textquoterights Van Allen radiation belts are investigated in a laboratory experiment. Predominantly electrostatic waves in the whistler branch are launched that propagate near the resonance cone with measured wave normal angle greater than 85\textdegree . When the pump amplitude exceeds a threshold \~5\texttimes10-6 times the background magnetic field, wave power at frequencies below the pump frequency is observed at wave normal angles (\~55\textdegree) . The scattered wave has a perpendicular wavelength that is nearly an order of magnitude larger than that of the pump wave. Occasionally, the parametric decay of a lower hybrid wave into a magnetosonic wave and a whistler wave is simultaneously observed with a threshold of δB/B0\~7\texttimes10-7 .

Tejero, E.; Crabtree, C.; Blackwell, D.; Amatucci, W.; Mithaiwala, M.; Ganguli, G.; Rudakov, L.;

Published by: Physics of Plasmas      Published on: 09/2015

YEAR: 2015     DOI: 10.1063/1.4928944

Nonlinear waves; Van Allen Belts

2014

An impenetrable barrier to ultrarelativistic electrons in the Van Allen radiation belts

Early observations1, 2 indicated that the Earth\textquoterights Van Allen radiation belts could be separated into an inner zone dominated by high-energy protons and an outer zone dominated by high-energy electrons. Subsequent studies3, 4 showed that electrons of moderate energy (less than about one megaelectronvolt) often populate both zones, with a deep \textquoteleftslot\textquoteright region largely devoid of particles between them. There is a region of dense cold plasma around the Earth known as the plasmasphere, the outer boundary of which is called the plasmapause. The two-belt radiation structure was explained as arising from strong electron interactions with plasmaspheric hiss just inside the plasmapause boundary5, with the inner edge of the outer radiation zone corresponding to the minimum plasmapause location6. Recent observations have revealed unexpected radiation belt morphology7, 8, especially at ultrarelativistic kinetic energies9, 10 (more than five megaelectronvolts). Here we analyse an extended data set that reveals an exceedingly sharp inner boundary for the ultrarelativistic electrons. Additional, concurrently measured data11 reveal that this barrier to inward electron radial transport does not arise because of a physical boundary within the Earth\textquoterights intrinsic magnetic field, and that inward radial diffusion is unlikely to be inhibited by scattering by electromagnetic transmitter wave fields. Rather, we suggest that exceptionally slow natural inward radial diffusion combined with weak, but persistent, wave\textendashparticle pitch angle scattering deep inside the Earth\textquoterights plasmasphere can combine to create an almost impenetrable barrier through which the most energetic Van Allen belt electrons cannot migrate.

Baker, D.; Jaynes, A.; Hoxie, V.; Thorne, R.; Foster, J.; Li, X.; Fennell, J.; Wygant, J.; Kanekal, S.; Erickson, P.; Kurth, W.; Li, W.; Ma, Q.; Schiller, Q.; Blum, L.; Malaspina, D.; Gerrard, A.; Lanzerotti, L.;

Published by: Nature      Published on: 11/2014

YEAR: 2014     DOI: 10.1038/nature13956

Magnetospheric physics; ultrarelativistic electrons; Van Allen Belts; Van Allen Probes

Chorus-driven acceleration of radiation belt electrons in the unusual temporal/spatial regions

Cyclotron resonance with whistler-mode chorus waves is an important mechanism for the local acceleration of radiation belt energetic electrons. Such acceleration process has been widely investigated during the storm times, and its favored region is usually considered to be the low-density plasmatrough with magnetic local time (MLT) from midnight through dawn to noon. Here we present two case studies on the chorus-driven acceleration of radiation belt electrons in some \textquotedblleftunusual\textquotedblright temporal /spatial regions. (1) The first event recorded by the Van Allen Probes during the nonstorm times from 21 to 23 February 2013. Within two days, a new radiation belt centering around L=5.8 formed and gradually merged with the original outer belt. The corresponding relativistic electron fluxes increased by a factor of up to 50, accompanied by strong chorus waves. The quasi-linear STEERB model, including the local acceleration of detected chorus waves, can basically reproduce the observed 0.2\textendash5.0 MeV electron flux enhancement at the center of new belt. These results clearly illustrate the importance of chorus-driven local acceleration during the nonstorm times. (2) The second event observed by the Van Allen Probes in the duskside (MLT\~18) region on 2 October 2013. The quasi-linear diffusion analysis of STEERB code shows that, even in the duskside region with large ratio between the electron plasma frequency and the electron gyrofrequency, the detected intense (\~0.5 nT) chorus waves can still effectively accelerate radiation belt electrons. These results clearly exhibit the broader effective acceleration regions than usually estimated, at least for this one example.

Su, Zhenpeng; Xiao, Fuliang; Zheng, Huinan; Zhu, Hui;

Published by:       Published on: 08/2014

YEAR: 2014     DOI: 10.1109/URSIGASS.2014.6929875

Acceleration; Van Allen Belts; Van Allen Probes

Prompt energization of relativistic and highly relativistic electrons during a substorm interval

On 17 March 2013, a large magnetic storm significantly depleted the multi-MeV radiation belt. We present multi-instrument observations from the Van Allen Probes spacecraft Radiation Belt Storm Probe A and Radiation Belt Storm Probe B at \~6 Re in the midnight sector magnetosphere and from ground-based ionospheric sensors during a substorm dipolarization followed by rapid reenergization of multi-MeV electrons [1]. A 50\% increase in magnetic field magnitude occurred simultaneously with dramatic increases in 100 keV electron fluxes and a 100 times increase in VLF wave intensity. Chorus is excited following the injection of low-energy (1\textendash30 keV) plasma sheet electrons into the inner magnetosphere [2]. During the 17 March substorm injection, cold plasma that had circulated into the nightside magnetosphere from the dayside ionosphere-plasmasphere contributed to an energetic (50 keV) electron population involved in chorus-mode wave amplification [3]. The high-energy tail (>100 keV) of the injected electrons and the intense VLF waves provide a seed population and energy source for subsequent radiation belt energization. The observed electron flux behavior is striking in its large increases over short intervals. As seen by RBSP-A at L* \~ 4.5 highly relativistic (>2MeV) electron fluxes increased immediately at the time of the substorm injection and strong chorus enhancement. At RBSP-B, at apogee at substorm onset, observed in the \~5 h separation between L* = 4.0 crossings, 3.60 MeV highly relativistic electron fluxes increased by a factor of 56, while 4.50 MeV flux increased by an even larger factor of 95. The 17 March multipoint observations indicate the significant role that substorm processes can play in creating a seed population of 100 keV electrons and VLF chorus wave enhancements that can lead to a prompt energization of relativistic and highly relativistic electrons in the region outside the plasm- pause.

Foster, John; Erickson, Philip;

Published by:       Published on: 08/2014

YEAR: 2014     DOI: 10.1109/URSIGASS.2014.6929876

Magnetic flux; Magnetosphere; Van Allen Belts; Van Allen Probes

Radiation belt electron acceleration by chorus waves during the 17 March 2013 storm

Local acceleration driven by whistler-mode chorus waves is suggested to be fundamentally important for accelerating seed electron population to ultra-relativistic energies in the outer radiation belt. In this study, we quantitatively evaluate chorus-driven electron acceleration during the 17 March 2013 storm, when Van Allen Probes observed very rapid electron acceleration up to multi MeV within \~15 hours. A clear peak in electron phase space density observed at L* \~ 4 indicates that the internal local acceleration process was operating. We construct the global distribution of chorus wave intensity from the low-altitude electron measurements by multiple POES satellites over a broad L-MLT region, which is used to simulate the radiation belt electron dynamics driven by chorus waves. Our simulation results show remarkable agreement with the observed electron PSD near its peak in timing, energy dependence, and pitch angle distribution, but other loss processes and radial diffusion may be required to explain the differences in observation and simulation at other locations away from the PSD peak. Our simulation results suggest that local acceleration by chorus waves is likely to be a robust and repetitive process and plays a critical role in accelerating radiation belt electrons from injected convective energies (\~ 100 keV) to ultra-relativistic energies (multi MeV).

Thorne, R.; Li, W.; Ma, Q.; Ni, B.; Bortnik, J.;

Published by:       Published on: 08/2014

YEAR: 2014     DOI: 10.1109/URSIGASS.2014.6929882

Atmospheric waves; Van Allen Belts; Van Allen Probes

Cosmic ray physics in space: from fundamental physics to applications

One hundred years after their discovery by Victor Hess, cosmic rays are nowadays subject of intense research from space-based detectors, able to perform for the first time high precision measurement of their composition and spectra as well as of isotropy and time variability. On May 2011, the alpha magnetic spectrometer (AMS-02) has been installed on the International Space Station, to measure with high accuracy the cosmic ray properties searching for rare events which could be an indication of the nature of dark matter or presence of nuclear antimatter. AMS-02 is the result of nearly two decades of effort of an international collaboration, involving in particular Chinese and Italian scientists, to design and build a state of the art detector capable to perform high precision cosmic rays measurement. In this paper, I will briefly report on the first results of AMS-02 as well as about two cosmic rays researches related researches which are spinoffs of the AMS technology development: utilization of superconductivity in space to develop magnetic shields capable to protect the astronauts from the intense dose of radiation collected during an interplanetary mission and study of the lithospheric\textendashmagnetospheric interactions linking seismology to cosmic rays in the context of the Sino-Italian collaboration on the China seismo-electromagnetic satellite.

Battiston, Roberto;

Published by: Rendiconti Lincei      Published on: 03/2014

YEAR: 2014     DOI: 10.1007/s12210-014-0293-1

Anti matter; Cosmic rays; Dark matter; Seismology; Space research; Superconductivity; Van Allen Belts



  1